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Abstract
In the present work, we aim to talk about the analytical findings about the quantification of hub structures arising from

various graph operations applied to pairwise combinations of connected graphs and paths. Specifically, we delineate the hub
numbers resulting from the intersection and joining of two interconnected graphs. We also derive the hub numbers for the
intersection of two complete fuzzy graphs, as well as the intersection of a non-exhaustive connected fuzzy graph and complete
fuzzy graphs. Moreover, we determine the hub configuration for the intersection of two paths, denoted Pn and Pm, whereby
n ⩾ 2 and m ⩾ 3. In addition to enumerating these hub values, we provide an upper boundary on the maximum hub number
attainable by taking the join of two paths Pn and Pm, where 2 ⩽ m ⩽ n. Through a rigorous mathematical treatment of these
graph constructions and evaluations of their associated hub structures, the present work aims to systematically characterize
and compare the topological properties induced by different relational combinations of graphs and paths. It is hoped that the
communication of these findings will provide novel insight into the structural transformations and complexity changes incurred
by various graph operations.
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1. Introduction

Fuzzy graphs are a generalization of classical graph theory that allows for the representation of un-
certainty and vagueness in graphs. They are widely used in various fields such as engineering, economics,
computer science, and social disciplines. Fuzzy graphs have applications in decision making, statistics, net-
working, and modeling real-life issues. They can be used to represent ambiguous networks, analyze network
characteristics, and solve real-world problems such as election competitions and finding central affected
nodes in infectious diseases [1, 2]. Additionally, fuzzy graphs have been extended to Pythagorean fuzzy sets
and Interval-Valued Pythagorean Neutrosophic Graphs (IVPNG) to model human thinking and real-time
situations. These extensions introduce new concepts such as regular, strong, product, support strong, and
effective balanced IVPNGs, which can be used for aggregating information and successful curriculum design
[3, 4]. Crisp graphs, being a fundamental mathematical construct, exhibit a plethora of operations that allow
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for their manipulation and analysis. These operations include but are not limited to, union, intersection,
join, tensor product, Cartesian product, composition, strong product, disjunction, and symmetric difference
of graphs. A comprehensive treatment of these operations is provided in [5, 6, 7, 8, 9, 10].

The theoretical foundations and notation employed in the present study are informed by the scholarship
delineated in the cited references [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Regarding fundamental
graph concepts, Mahioub [11] provides a comprehensive study of fuzzy graph theory. Mahioub and Haifa
[12, 13] define domiantion in product fuzzy graphs. Mordeson and Nair [14] investigate fuzzy cycles and
cocycles. Operations on fuzzy graphs are examined by Mordeson and Peng [15] and Mordeson and Yao
[16]. Ore [17] and Rosenfeld [18] establish foundational notions of graphs and fuzzy graphs, respectively.
Ramaswmy [19] defines product fuzzy graphs. E. Sampathkumar [20] and Somasundaram and Somasundarm
[21] define global domination and domination in fuzzy graphs. Venugopalam and Kumari [22] delineate
operations on fuzzy graphs. Zadeh [23, 24] introduces seminal notions of fuzzy sets and similarity relations
seminal to this framework. The above sources provide the structural typologies, algebraic formalisms and
problem conceptualizations underscoring the analytical objectives and modeling techniques employed herein.
Drawing from this extant literature, the key terminology, postulates, and required theoretical apparatus are
established.

Furthermore, Ahmed and Shubatah [25] define and compute the hub number of fuzzy graphs. Exploring
this concept further, Ahmed and Shubatah [26] introduce the notion of total hub number in fuzzy graphs.
Providing antecedent context, Matthew [27] establishes the hub number of traditional graphs. Those sources
directly apply hub graph theory to fuzzy graph configurations, thereby furnishing critical context and
founding definitions for the present investigation’s analytical objectives and modeling approach focused on
structural properties induced by graph operations.

Lemma 1.1. Let G1 = (µ1, ρ1) and G2 = (µ2, ρ2) be two fuzzy graphs consider the join G∗ = G∗
1 +G∗

2 = (V1 ∪
V2,E1 ∪E2 ∪E ′) of graphs where E ′ is the set of all arcs joining the nodes of V1 and V2 where we a assume that
V1 ∩ V2 ̸= ϕ then the join of two fuzzy graphs G1 and G2 is a fuzzy graph G = G1 +G2 : (µ1 + µ2, ρ1 + ρ2)
defined as follows:

µ1 + µ2 =


(µ1 ∪ µ2) if u ∈ V1 ∩ V2

µ1(u); u ∈ V1 − V2
µ2(u); u ∈ V2 − V1

(1.1)

and

ρ1 + ρ2 =


(ρ1 ∪ ρ2) if (u, v) ∈ E1 ∩ E2

ρ1(u, v); (uv) ∈ E1 − E2
ρ2(u, v); (u, v) ∈ E2 − E1

µ1 × µ2 if(u, v) ∈ E ′

(1.2)

Let G1 = (µ1, ρ1) and G2 = (µ2, ρ2) be two fuzzy graphs, consider the intersection G∗ = G∗
1 ∩ G∗

2 =
(V1 ∩ V2,E1 ∩ E2) of graphs. We a assume that V1 ∩ V2 ̸= ϕ then the intersection of two fuzzy graphs G1
and G2 is a Product fuzzy graph G = G1 ∩G2 : (µ1 ∩ µ2 , ρ1 ∩ ρ2) defined as follows:

µ1 ∩ µ2 =
{

min(µ1,µ2) if u ∈ V1 ∩ V2. (1.3)

and
ρ1 ∩ ρ2 =

{
min(ρ1, ρ2) if (uv) ∈ E1 ∩ E2 (1.4)

Let G1 = (µ1, ρ1) and G2 = (µ2, ρ2) be two fuzzy graphs considering the union G∗ = G∗
1 ∪ G∗

2 =
(V1 ∪ V2,E1 ∪ E2) of graphs, where V1 ∪ V2 = ϕ then the union of two fuzzy graphs G1 and G2 is a fuzzy
graph G = G1 ∪G2 : (µ1 ∪ µ2 , ρ1 ∪ ρ2) defined as follows:

µ1 ∪ µ2 =


max(µ1,µ2) if u ∈ V1 ∪ V2

µ1(u); u ∈ V1 − V2
µ2(u); u ∈ V2 − V1

(1.5)
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and

ρ1 ∪ ρ2 =


max(ρ1, ρ2)(u, v) if (u, v) ∈ E1 ∪ E2

ρ1(u, v); (u, v) ∈ E1 − E2
ρ2(u, v); (u, v) ∈ E2 − E1

(1.6)

Theorem 1.2. [12]

• For any complete fuzzy graph Kµ,h(Kµ) = 0.

• For any path fuzzy graphs pn,h(pn) =
∑p−2

i=1 µ(vi).

.

2. Hub Number in Some Operations on Fuzzy Graphs

In this section, we aim to characterize and examine the structural attribute denoted as the hub num-
ber within the context of certain relational operations undertaken on configurations of ambiguous graphs.
Specifically, we introduce and analyze the hub number construct for the intersection and joining graph-
theoretical constructs applied to combinations of fuzzy graphs.

In the following theorem, we give hub numbers h, γ and γg of the intersection of any disjoint fuzzy
graphs G1 and G2.

Theorem 2.1. Let G1 and G2 be two disjoint fuzzy graphs,

h(G1 ∩G2) = 0.

Proof. Let H1 be an h− set of a fuzzy graph G1 and let H2 be an h− set of a fuzzy graph G2. Since G1
and G2 are disjoint, then H1 ∩H2 = ϕ. Therefore h(G1 ∩G2) = |H1 ∩H2| = |ϕ| = 0.

Theorem 2.2. Let G1 and G2 be two non disjoint fuzzy graphs,

h(G1 ∩G2) ⩽ γ(G1 ∩G2).

Proof. Let G1 = V(Pn) = {v1, v2, ···, vn}, and G2 = V(Pm) = {v1, v2, ···, vn} be two fuzzy graphs; the
following three cases are considered: Case 1: When n = 2. Suppose that {v1, v2} are the vertices of a path
P2, and m = 3 Suppose that {v1, u1, u2} are the vertices of a path P3 see Figure 3.1, then, (v∗1 ∩ v∗2) = {v1}
is not hub set so h(G1 ∩G2) = 0. and hence, h(G1 ∩G2) < γ(G1 ∩G2).

Example 2.3. Consider two fuzzy graphs G1 and G2 given in Fig. 1(a) where, G1 = (µ1, ρ1) defined as:
µ1(v1) = 0.2, µ1(v2) = 0.1, and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V1 and G2 = (µ2, ρ2) defined as:
µ2(v1) = 0.4, ,µ2(u3) = 0.3 and ρ(u, v) = µ2(u)∧ µ2(v) for all u, v ∈ V2. Then the Fig. 1(b) gives the
intersection fuzzy graph (G1 ∩G2) = (V, µ, ρ) where, V = {v1} defined as: µ(v1) = 0.2

G1 :

G2 :

G1 ∩G2 :
υ2υ1

u3
v1 u2 u
u u

uu
uv1

Fig. 1(a): G1 and G2
Fig. 1(b): G1 ∩ G2
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Case 2: When n = 2. Let {v1, v2} be the vertices of a path P2, and m = 3 Suppose that {v1, v2,u1} are
the vertices of a path P3 see Figure 3.2, then, (V∗

1 ∩ V∗
2 ) = 2 = {v1, v2} is not hub set so, h(G1 ∩G2) = 0.

and hence, h(G1 ∩G2) < γ(G1 ∩G2).

Example 2.4. Consider the two fuzzy graphs G1 and G2 given in Fig. 2(a) where, G1 = (µ1, ρ1) defined as:
µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3 and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V1 and G2 = (µ2, ρ2)
defined as: µ2(v1) = 0.4, µ2(v2) = 0.3, µ2(u1) = 0.3 and ρ(u, v) = µ2(u)∧ µ2(v) for all u, v ∈ V2. Then
the Fig. 2(b)) gives the intersection fuzzy graph (G1 ∩G2) = (V, µ, ρ) where, V = {v1, v2} defined as:
µ(v1) = 0.2, µ(v2) = 0.1, ρ(v1, v2) = 0.1.

G1 :

G2 :

G1 ∩G2 :
υ2υ1

u1
v1 v2 u
u u

uu
u uv1 v2

Fig. 2(a): G1 and G2
Fig. 2(b): G1 ∩ G2

Case 3: When n = 3. Let {v1, v2, v3} be the vertices of a path P3, and m = 4. Suppose that {v1, v2, v3,u1}
are the vertices of a path P4 see Figure 3(b), then, (V∗

1 ∩ V∗
2 = {v1, v2, v3}, then D = {v2} is a hub set which

is also a dominating set.Hence, h(G1 ∩G2) = γ(G1 ∩G2) = 0.1 this complete the proof.

Example 2.5. Consider the two fuzzy graphs G1 and G2 given in Fig. 3(a) where, G1 = (µ1, ρ1) defined as:
µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3 and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V1 and G2 = (µ2, ρ2)
defined as: µ2(v1) = 0.4, µ2(v2) = 0.3,µ2(v3) = 0.3,µ2(u1) = 0.3 and ρ(u, v) = µ2(u) ∧ µ2(v) for
all u, v ∈ V2. Then the Fig. 3(b)) gives the intersection fuzzy graph (G1 ∩ G2) = (V, µ, ρ) where,
V = {u2, v1, v2, v3} defined as: µ(v1) = 0.2, µ(v2) = 0.1, µ(v3) = 0.3, ρ(u, v) = µ2(u)∧ µ2(v) for all
u, v ∈ V2.

G1 :

G2 :

G1 ∩G2 :
υ2v1

υ3v1 v2 u
u u

uu
u uu

u
uv1 v2

u1

v3 v3

Fig.3(a): G1 and G2 Fig.3(b): G1 ∩ G2

Theorem 2.6. Let G1 = (µ1, ρ1) and G2 = (µ2, ρ2) be two connected fuzzy graph,

h(G1 +G2) =


0 if G1 and G2 are complete

µ(vi), if G1 is complete and G2 is not complete

min(h(G1),h(G2)) if G1and G2 are not complete

(2.1)

Proof. Suppose G1 and G2 are both complete. Then G1 +G2 is also complete fuzzy craph. By (Theorem
2.1), h(G1 +G2) = 0. Suppose G1 is complete and G2 is non-complete. Let u ∈ V(G1) and H = {u}. Let
v,w ∈ V(G1 +G2) −H. Consider the following cases:
Case 1. Suppose v,w ∈ V(G) − u. Since G1 is complete fuzzy graph, there is a path, v,u,w in G1. Hence,
there is an H-path between v and w in G1 +G2.
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Case 2. Suppose v ∈ V(G1) − u and w ∈ V(G2). Since G1 is complete fuzzy graph, v and u are adjacent.
By definition of G1 +G2,u is adjacent to w. Hence, there is a path, v,u,w in G1 +G2. Thus, there is an
H-path between v and w in G1 +G2.
Case 3. Suppose v,w ∈ V(G2). By definition of G1 +G2,u is adjacent to both v and w. Hence, there is
a path v,u,w in G1 +G2. Thus, there is an H-path between v and w in G1 +G2. Thus, H is a hub set of
G1 +G2. Accordingly, h(G1 +G2) = µ(u). Since H is non-complete, consequently G1 +G2 is non-complete.
By Theorem[2.1], h(G1 +G2) ̸= 0. Therefore, h(G1 +G2) = µ(u).
Suppose G1, and G2 are both non-complete fuzzy graph. Consider the following cases:
Case 1. Suppose h(G) = µ(u). Let u ∈ V(G1). Let H = {u} be a minimum hub set of G1. Let v,w ∈
V(G1 +G2) − u. Consider the following subcases:
Subcase 1. Suppose v,w ∈ V(G1) − u. Since H is a hub set of G1, there is an H-path between v and w in
G1 +G2.
Subcase 2. Suppose v ∈ V(G1) − u and w ∈ V(G2). Since H is a hub set of G1, v is incident to u. By
definition of G1 +G2, u is incident to w. This means that {v,u,w} is an H− path in G1 +G2. Hence, H is
a hub set of G1 +G2. Thus, h(G1 +G2) = 1.
Subcase 3. Suppose v,w ∈ V(G2). By definition of G1 +G2, u is incident to both v and w. This means that
{v,u,w} is an H-path in G1 +G2. Hence,H is a hub set of G1 +G2. Thus, h(G1 +G2) = µ(u). Combining
the three subcases, h(G1 +G2) = µ(u). Since G1and G2 are both non-complete, G1 +G2 is non-complete.
So, h(G1 +G2) ̸= 0. Therefore, h(G1 +G2) = µ(u).
Case 2. Suppose h(G2) = µ(u). The proof is similar to Case 1.
Case 3. h(G),h(H) ⩾

∑p−2
i=1 µ(vi). Let u ∈ V(G1), cV(G2), and H = {u, c}. Consider the following subcases:

Subcase 1. Let v,w ∈ V(G1) − u. By definition of G1 +G2, both v, and w are incident to c. That is, there
is an H-path v, c,w in G1 +G2. Hence, H = {u, c} is a hub set of G1 +G2. So, h(G1 +G2) ⩽

∑p−2
i=1 µ(vi).

Subcase 2. Let v,w ∈ V(G2) − c. The proof is similar to Subcase 1.
Subcase 3. Let v ∈ V(G1) − u and w ∈ V(G2) − c. By definition of G1 + G2, v is incident to c, c is
incident to u, and u is incident to w. That is, {v, c,u,w} is an H-path inG1 +G2. Hence, H = {u, c} is
a hub set of G1 +G2. So, h(G1 +G2) ⩽

∑p−2
i=1 µ(vi). Suppose h((G1 +G2) = µ(u). Assume without loss

of generality,H = {u} be a minimum hub set of G1 +G2, where u ∈ V(G1). Let v,w ∈ V(G1) − u. Thus,
{v,u,w} is an H-path in G1. This implies that H is a hub set of G1. That is, h(G1) = µ(u). This is a
contradiction to the assumption that h(G1) ⩾

∑p−2
i=1 µ(vi). Therefore, h(G1 +G2) =

∑p−2
i=1 µ(vi).

Corollary 2.7. Let G1 and G2 be non complete fuzzy graphs at least one of the following holds
(i)

γ(G1 +G2) ⩽ h(G1 +G2).

(ii)
γ(G1 +G2) ⩽ h(G1 +G2).

Proof. Let G1 and G2 are non complete fuzzy graphs and let H be an H − set of G1 + G2 then H is a
dominating set of G1 +G2. Hence,

γ(G1 +G2) ⩽ h(G1 +G2).

similarly, (ii) holds.

Example 2.8. Consider the two fuzzy graphs G1 and G2 given in Fig. 4(a) where, G1 = (µ1, ρ1) de-
fined as: µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3 and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V1 and
G2 = (µ2, ρ2) defined as: µ2(u1) = 0.4, µ2(u2) = 0.3,µ2(u3) = 0.5,µ2(u4) = 0.4, and ρ(u, v) =
µ2(u)∧µ2(v) for all u, v ∈ V2. Then the Fig. 4(b)) gives the join fuzzy graph (G1 +G2) = (V, µ, ρ) where,
V = {u1, u2, u3u4, v1, v2, v3, } defined as: µ(v1) = 0.2, µ(v2) = 0.1, µ(v3) = 0.3, µ2(u1) = 0.4, µ2(u2) =
0.3,µ2(u3) = 0.5,µ2(u4) = 0.4ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V2.
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Fig. 4(a): G1 and G2 Fig. 4(b): G1+G2
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We see that h(G1 +G2) = γ(G1 +G2) = 0.1

Theorem 2.9. Let G1 = (µ1, ρ1) and G2 = (µ2, ρ2) be non complete fuzzy graphs , h(G1 +G2) ̸= h(G1 +G2).

Example 2.10. Consider the fuzzy graphs G1 = (V1, µ1, ρ1) where, V1 = {v1, v2, v3}, µ1(v1) = 0.2, µ1(v2) =
0.1, µ1(v3) = 0.3 and ρ(u, v) = µ1(u) ∧ µ1(v) for all u, v ∈ V1, G2 = (V2, µ2, ρ2) where, V2 =
{u1,u2}, µ2(u1) = 0.4, µ2(u2) = 0.3, ρ(u1,u2) = 0.12, G = (G1 +G2) = (V, µ, ρ) where, V = V1 ∪ V2 =
{u1,u1, v1, v2, v3}, µ(v1) = 0.2, µ(v2) = 0.1, µ(v3) = 0.3, µ(u1) = 0.4, µ(u2) = 0.3, ρ(u, v) = µ1(u)∧µ1(v)
for all u, v ∈ V G1 +G2 = (V,µ, ρ) where, V = {u1,u1, v1, v2, v3}, µ(v1) = 0.2, µ(v2) = 0.1, µ(v3) =
0.3, µ(u1) = 0.4, µ(u2) = 0.3, ρ((u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V and ρ(v1, v2) = ρ(u1, v3) =
ρ(u2, v2) = ρ(u2, v3) = ρ(u2, v1) = ρ(u1, v3) = ρ(u1, v1) = ρ(u1, v2) = ρ(u1, u2) = 0, G1 = (V,µ1, ρ1)
where, V = {v1, v2, v3}, µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3, ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V

G2 = (V, µ2, ρ2) where, V2 = {u1,u2}, µ1(u1) = 0.4, µ1(u2) = 0.3 and ρ2(u1, u2)= 0,
which given in Fig. 5(a), 5(b), 5(c), 5(d), respectively. Finally G = G1 +G2 = (V,µ, ρ) given in Fig. 5(e).
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Fig. 5(b): G1+G2 Fig. 5(c): G1 +G2
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Fig. 5(d): G1 and G2
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We see that, h(G1 +G2) ̸= h(G1 +G2).

Theorem 2.11. If G1 = pn = (µ1, ρ1) and G2 = pm = (µ2, ρ2) are two path fuzzy graphs such that
ρ1(u, v) = µ1(u)∧ µ2(v) for all (u, v) ∈ E1, ρ2(u, v) = µ2(u)∧ µ2(v), for all (u, v) ∈ E2, then

h(G1 ∪G2) =

{ ∑p−2
i=1 µ(vi) ifV

∗
1 ∩ V∗

2 = 1∑p−3
i=1 µ(vi) ifV

∗
1 ∩ V∗

2 > 1 and n,m ⩾ 3
(2.2)

Proof. Let G1 ∪G2 be the union of the fuzzy graphs G1 and G2. Then, V(G1 ∪G2) = V(G1) ∪ V(G2) and
E(G1 ∪G2) = E(G1)∪ E(G2)

Case 1: If V∗
1 ∩ V∗

2 = 1 This means that the fuzzy connected components of G1 and G2 intersect at
only one vertex. Then, the connectivity of G1 ∪G2 is contributed by all vertices except the vertex in the
intersection. Hence, h(G1 ∪G2) =

∑p−2
i=1 µ(vi).

Case 2: If V∗
1 ∩ V∗

2 > 1 This means that the fuzzy connected components intersect at more than one
vertex. Then, the connectivity of G1 ∪G2 is contributed by all vertices except the vertices in the intersection.
Hence, h(G1 ∪G2) =

∑p−3
i=1 µ(vi).

Therefore, the given formula holds for the height of the fuzzy union graph G1 ∪G2 based on the inter-
section of the fuzzy connected components of G1 and G2.

.

Example 2.12. Consider the two path fuzzy graphs G1 = pn and G2 = pm given in Fig. 6(a) where,
G1 = (µ1, ρ1) defined as: µ1(v1) = 0.6, µ1(v2) = 0.1 and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V1 and
G2 = (µ2, ρ2) defined as: µ2(v1) = 0.5, µ2(u1) = 0.6,µ(u2) = 0.7 and ρ(u, v) = µ2(u)∧ µ2(v) for all
u, v ∈ V2. Then the Fig. 6(b)) gives the union fuzzy graph (G1 ∪G2) = (V, µ, ρ) where, V = {v1, v2,u1,u2}
defined as: µ(v1) = 0.6, µ(v2) = 0.1 ,µ(u1) = 0.6,µ(u2) = 0.7 and ρ(u, v) = µ(u)∧ µ(v) for all u, v ∈ V

G1 :

G2 :

v2v1

v1 u1 u2

v1 u1 u2

v2u
u u

uu
u u u
u

Fig. 6(a): G1 and G2 Fig. 6(b): G1 ∪ G2

Example 2.13. Consider the two path fuzzy graphs G1 and G2 given in Fig. 7(a) where, G1 = (µ1, ρ1) defined
as: µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3 and ρ(u, v) = µ1(u)∧µ1(v) for all u, v ∈ V1 and G2 = (µ2, ρ2)
defined as: µ2(v1) = 0.5, µ2(u1) = 0.1,µ(u2) = 0.9 and ρ(u, v) = µ2(u)∧ µ2(v) for all u, v ∈ V2. Then
the Fig. 7(b)) gives the union fuzzy graph (G1 ∪G2) = (V, µ, ρ) where, V = {v1, v2, v3,u1,u2} defined as:
µ(v1) = 0.5, µ(v2) = 0.1,µ(v3) = 0.3 ,µ(u1) = 0.1,µ(u2 = 0.9 and ρ(u, v) = µ(u)∧ µ(v) for all u, v ∈ V

G1 :

G2 :

v2v1 v3

v1 u1 u2

v1 u2 u3

v2 v3u
u u u

uu
u u u
u u

Fig. 7(a): G1 and G2 Fig. 7(b): G1 ∪G2
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Example 2.14. Consider the two path fuzzy graphs G1 and G2 given in Fig. 8(a) where, G1 = (µ1, ρ1) defined
as: µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3,µ1(v4) = 0.5, and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V1
and G2 = (µ2, ρ2) defined as: µ2(v1) = 0.4, µ2(u1) = 0.3,µ(u2) = 0.4 and ρ(u, v) = µ2(u)∧ µ2(v)
for all u, v ∈ V2. Then the Fig. 8(b)) gives the union fuzzy graph (G1 ∪ G2) = (V, µ, ρ) where, V =
{v1, v2, v3, v4,u1,u2} defined as: µ(v1) = 0.4, µ(v2) = 0.3,µ(v3) = 0.3,µ(v4) = 0.5, ,µ(u1) = 0.3,µ(u2 = 0.4
and ρ(u, v) = µ(u)∧ µ(v) for all u, v ∈ V

G1 :

G2 :

v2v1 v3

v1 u2u1
u2

v1 v2 v3

u1

v4
v4

u
u u u

uu u
u u u u

u
u

Fig. 8(a): G1 and G2 Fig. 8(b): G1 ∪ G2

case2: if V1 ∩ V2 > 1

Example 2.15. Consider the two fuzzy graphs G1 and G2 given in Fig. 9(a) where, G1 = (µ1, ρ1) defined as:
µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3 and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V1 and G2 = (µ2, ρ2)
defined as: µ2(v1) = 0.4, µ2(v2) = 0.3, µ2(u1) = 0.3 and ρ(u, v) = µ2(u)∧ µ2(v) for all u, v ∈ V2. Then
the Fig. 9(b)) gives the union fuzzy graph (G1 ∪G2) = (V, µ, ρ) where, V = {v1, v2, v3,u1} defined as:
µ(v1) = 0.4, µ(v2) = 0.3,µ(v3) = 0.3, µ(u1) = 0.3, ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V

G1 :

G2 :

v2v1 v3

v1 v2 u3

v1 v2 v3

u3u
u u u

uu
u u u

u
Fig. 9(a): G1 and G2 Fig. 9(b): G1 ∪G2

Example 2.16. Consider the two fuzzy graphs G1 and G2 given in Fig. 10(a) where, G1 = (µ1, ρ1) defined
as: µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3,µ1(v4) = 0.5, µ1(v5) = 0.6 and ρ(u, v) = µ1(u)∧ µ1(v) for
all u, v ∈ V1 and G2 = (µ2, ρ2) defined as: µ2(v1) = 0.4, µ2(v2) = 0.3,µ(v3) = 0.4,µ(v4) = 0.5, µ2(u1) =
0.3,µ2(u2) = 0.7 and ρ(u, v) = µ2(u)∧ µ2(v) for all u, v ∈ V2. Then the Fig. 10(b)) gives the fuzzy union
graph (G1 ∪G2) = (V, µ, ρ) where, V = {v1, v2, v3, v4,u1} defined as: µ(v1) = 0.4, µ(v2) = 0.3,µ(v3) =
0.4,µ(v4) = 0.5, ,µ(u1) = 0.3, and ρ(u, v) = µ(u)∧ µ(v) for all u, v ∈ V

G1 :

G2 :

v2v1 v3

v1 v3v2 u3

v1 v2 v3

u3

v4
v4

u
u u u

uu u
u u u u

u
u

Fig. 10(a): G1 and G2 Fig. 10(b): G1 ∪ G2

Example 2.17. Consider the two fuzzy graphs G1 and G2 given in Fig. 11(a) where, G1 = (µ1, ρ1) defined
as: µ1(v1) = 0.2, µ1(v2) = 0.1, µ1(v3) = 0.3,µ1(v4) = 0.5, µ1(v5) = 0.6 and ρ(u, v) = µ1(u)∧µ1(v) for all
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u, v ∈ V1 and G2 = (µ2, ρ2) defined as: µ2(v1) = 0.4, µ2(v2) = 0.3, µ2(v3) = 0.8 µ2(u1) = 0.3,µ2(u2) = 0.7
and ρ(u, v) = µ2(u)∧µ2(v) for all u, v ∈ V2. Then the Fig. 11(b)) gives the union fuzzy graph (G1 ∪G2) =
(V, µ, ρ) where, V = {v1, , v3, v4, v5,u1,u2} defined as: µ(v1) = 0.2, µ(v2) = 0.4,µ(v3) = 0.8,µ(v4) =
0.5, µ(v5) = 0.6,µ(u1) = 0.3,µ(u2) = 0.7 and ρ(u, v) = µ1(u)∧ µ1(v) for all u, v ∈ V

G1 :

G2 :

v2v1 v3

v1 v3v2 u1

v1v5

u2

v3 v4

u2

u1

v2v4
v5

u
u u u

uu u
u u

u
u u u

u

uu
u

Fig. 11(a): G1 and G2 Fig. 11(b): G1 ∪G2

Conclusion

This study aimed to systematically analyze hub structures arising from various graph operations applied
to interconnected graphs and paths. Analytical findings were delineated regarding the quantification of hub
numbers resulting from intersections and joinings of two connected graphs. Specifically, the hub config-
urations induced by intersecting two complete fuzzy graphs and intersecting a non-exhaustive connected
fuzzy graph with a complete fuzzy graph were mathematically derived. Additionally, the hub topology
for intersecting two paths, Pn and Pm, where n ⩾ 2 and m ⩾ 3, was determined. An upper boundary
on the maximum attainable hub number from taking the join of paths Pn and Pm, where 2 ⩽ m ⩽ n,
was also established. Through a rigorous treatment of the mathematics underlying these graph construc-
tions, key transformations, and complexity changes to topological properties incurred by different relational
combinations were characterized and compared. Communication of these analytical findings regarding hub
quantifications offers novel theoretical insights into structural modifications induced by graph operations.
Overall, the study provided a systematic framework for understanding hub structures emerging from pairwise
graph intersections and joins.
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